Hopf Bifurcations and Limit Cycles in Evolutionary Network Dynamics
نویسندگان
چکیده
The replicator-mutator equations from evolutionary dynamics serve as a model for the evolution of language, behavioral dynamics in social networks, and decision-making dynamics in networked multi-agent systems. Analysis of the stable equilibria of these dynamics has been a focus in the literature, where symmetry in fitness functions is typically assumed. We explore asymmetry in fitness and show that the replicator-mutator equations exhibit Hopf bifurcations and limit cycles. We prove conditions for the existence of stable limit cycles arising from multiple distinct Hopf bifurcations of the dynamics in the case of circulant fitness matrices. In the noncirculant case we illustrate how stable limit cycles of the dynamics are coupled to embedded directed cycles in the payoff graph. These cycles correspond to oscillations of grammar dominance in language evolution and to oscillations in behavioral preferences in social networks; for decision-making systems, these limit cycles correspond to sustained oscillations in decisions across the group.
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملPatterns of oscillation in a Ring of Identical Cells with Delayed Coupling
We investigate the behaviour of a neural network model consisting of three neurons with delayed self and nearest-neighbour connections. We give analytical results on the existence, stability and bifurcation of nontrivial equilibria of the system. We show the existence of codimension two bifurcation points involving both standard and D3-equivariant, Hopf and pitchfork bifurcation points. We use ...
متن کاملEarly Afterdepolarizations with Growing Amplitudes do not Require Stable Limit Cycles in the Fast Subsystem of Cardiac Action Potential Models
Early afterdepolarizations (EADs) are pathological oscillations in cardiac action potentials during the repolarization phase and may be caused by drug side effects, ion channel disease or oxidative stress. The most widely observed EAD pattern is characterized by oscillations with growing amplitudes. So far, its occurence is explained in terms of a supercritical Hopf bifurcation in the fast subs...
متن کاملHopf Bifurcations in Delayed Rock-Paper-Scissors Replicator Dynamics
We investigate the dynamics of three-strategy (rock–paper–scissors) replicator equations in which the fitness of each strategy is a function of the population frequencies delayed by a time interval T . Taking T as a bifurcation parameter, we demonstrate the existence of (non-degenerate) Hopf bifurcations in these systems and present an analysis of the resulting limit cycles using Lindstedt’s me...
متن کاملCoexistence of Limit Cycles and Homoclinic Loops in a SIRS Model with a Nonlinear Incidence Rate
Recently, Ruan and Wang [J. Differential Equations, 188 (2003), pp. 135–163] studied the global dynamics of a SIRS epidemic model with vital dynamics and a nonlinear saturated incidence rate. Under certain conditions they showed that the model undergoes a Bogdanov–Takens bifurcation; i.e., it exhibits saddle-node, Hopf, and homoclinic bifurcations. They also considered the existence of none, on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 11 شماره
صفحات -
تاریخ انتشار 2012